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In  this paper we apply the techniques of higher-order boundary-layer theory to 
study the steady streaming induced in the neighbourhood of a cylinder which 
vibrates harmonically, perpendicular to its generators, in an unbounded fluid. 
The theoretical predictions are compared with the results of experiments per- 
formed at high streaming Reynolds numbers. Improved agreement between 
theory and experiment is achieved although unresolved discrepancies remain. 

1. Introduction 
When a body, of typical dimension a, performs small amplitude vibrations 

with speed U, cos wt’ in a fluid, of kinematic viscosity v, which is otherwise at 
rest then a non-zero mean flow, or steady streaming, is induced in addition to 
the oscillatory flow components (Longuet-Higgins 1953; Stuart 1963, 1966; 
Riley 1965, 1967; Davidson & Riley 1972). If the viscous length (v/o)* < a 
then this steady streaming arises directly from the action of Reynolds stresses 
within the Stokes shear layer, where the induced mean velocities are O(eU,,) 
with e = U,/wa < 1. This streaming motion persists outside the shear layer and 
has been the subject of recent research by the aforementioned authors. Thus 
Stuart (1963) argued that with streaming velocities O(eU,) the mean motion 
outside the Stokes layer will be characterized by the parameter 

R, = eU,a/v = U2,/wv, 

which fulfils the role of a Reynolds number. For R, 1 the outer mean flow 
assumes a boundary-layer character; Stuart (1966) and Riley (1965) developed 
series solutions for this outer boundary-layer flow starting a t  the stagnation 
points S shown in figure 1, where the cylinder is assumed to have a circular 
cross-section. Stuart conjectured that this outer boundary layer will maintain 
its identity up to the point C, resulting in a ‘collision’ of the boundary layers 
leading, in turn, to the development of a jet-like flow along the axis of oscillation 
as shown in figure 1. Davidson & Riley (1 972) have confirmed experimentally 
the existence of this jet-like flow and have extended the series solutions by 
integrating the boundary-layer equations numerically between S and C (figure 1). 
By measuring the momentum flux in the jet and relating this to the terminal 
momentum flux in the boundary layer, encouraging agreement was achieved 
between theory and experiment. 

In  a recent study Bertelsen (1 974) has carried out measurements in the boun- 
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FIGURE 1. Schematic representation of the steady boundary layer 
and jet induced by the oscillations. 

dary layer on a cylinder of circular cross-section, a t  a location approximately 
57" from the point S in figure 1. A brass tube was placed inside a large cylindrical 
liquid-filled container. The cylinder was supplied with an alternating current 
and placed in a magnetic field, thus forcing sinusoidal oscillations. Tracer 
particles were introduced into the liquid and photographed using stroboscopic 
illumination synchronized to the frequency of the oscillation. From photographic 
records boundary-layer velocity profiles were measured for R, = 90 and 400. 
The measurements were, in effect, all made outside the shear-wave layer and the 
results were compared with the series solutions, which remain valid a t  this 
station. Discrepancies were noted between theory and experiment, particularly 
in the outer part of the boundary layer. As Bertelsen observed, effects of finite 
Reynolds number may account for this discrepancy. The purpose of the present 
paper is to develop the theory of the outer streaming induced by a vibrating 
cylinder in an unbounded fluid for R, 9 1 beyond first-order boundary-layer 
theory in order to assess the effects of finite R, upon the correlation between 
theory and experiment. We emphasize at this stage that we are concerned 
entirely with the induced streaming outside the Stokes shear layer. A summary 
of the solution within the shear layer may be found, for example, in Stuart 
(1963). 

In § 2 we begin by calculating the first-order boundary-layer flow. It is shown 
that this boundary layer, within which the velocities are O(l) ,  entrains fluid, 
as of course does the jet which forms along the axis of oscillation. The next 
step of the procedure is to calculate the mean outer inviscid flow, with velocities 
O(R;g), for which the cylinder and jet act as a sink of variable strength. The slip 
velocity, O(R;*), predicted by this inviscid flow a t  the cylinder surface is cor- 
rected by second-order boundary-layer theory. The results predicted by this 
second-order theory are compared, in § 3, with the experimental results of 
Bertelsen. Qualitatively better agreement between theory and experiment is 
recorded. However the difference remains sufficiently significant to suggest 
that effects of finite Reynolds number can account only in part for the discre- 
pancy observed by Bertelsen. 
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We conclude this section by briefly recalling the theory developed by Riley 
(1967) for the outer streaming when R, = O(1). With U,, w-1 and a as a typical 
velocity, time and length respectively the dimensionless stream function in the 
outer region may be expanded as 

where (x, y )  are Cartesian co-ordinates with origin fixed in the cylinder and all 
variables are dimensionless. Substitution of (1) into the non-dimensional Navier- 
Stokes equations yields, to first order, 

$0 = +op(x, Y )  cos t ,  
where $op(x, y )  represents the stream function for steady irrotational flow past 
a cylinder with uniform flow at infinity parallel to the axis of oscillation, say 
y = 0. This inviscid solution yields at the cylinder surface y” = 0 a slip velocity 
K(2) cost, which is adjusted in the Stokes shear layer, of thickness O(e/Rt). 
Here (2, y”) are orthogonal co-ordinates with y” measured normal to the cylinder 
surface. The O(e)  term in (1)  is decomposed as 

$1 = $P@, Y ,  t ,  Rs) + $ W X ,  Y, R,), ( 2 )  

where $p’ represents the time-independent mean motion upon which we wish 
to focus attention. Riley shows that it is only when the equation for 11.3 in (1) 
is considered that the equation for $p) emerges. This contains no direct contri- 
bution from the Reynolds stresses, and is essentially the full Navier-Stokes 
equation with Rs as the Reynolds number. Thus 

a($?), v2$p))p(x, y )  + ~,-1v4$?) = 0, (3) 

with V@) = o(1) as x2+y2+oo, (4a) 
= 0, a$p)/ay” = -$EdE/d2 on y” = 0. (4b) 

The boundary conditions at y” = 0 arise from the necessity to match @) with 
the corresponding shear-layer solution. 

Equations (3) and (4) form the basis for our discussion of the steady streaming 
in subsequent sections. 

2. The solution for R, > 1 

For the particular geometry under consideration, namely a circular cylinder, 
it proves convenient to work in terms not of the co-ordinates (x, y) of 0 1 but of 
the plane polar co-ordinates defined in figure 1. Also, for the purpose of develop- 
ing the solution of (3) for R, > 1 it is more convenient to use not (3) but the 
Navier-Stokes equations in the form 

a U p 6  + a( rv)/ar = 0, (5) 
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where V2 = a 2 p 2  + r-1 a/& + a2/ae2 and the velocity components are related 
to $-p) by u = a$-p)//ar and ru = -8$-p'/atI. We choose the typical length a of 
8 1 to be the cylinder radius, so that from (4 b)  u = 0 at  r = 1. The ' slip ' boundary 
condition at r = 1 is calculated as follows. For a circular cylinder the slip velocity 
at  the surface predicted by potential flow is V , ( O )  = 2 sin 8. If we now define 

< = e- in  
2 9  

then we require, from ( 4 b ) ,  
u = $sin2( at r = 1. 

We see from (8) and (9) that ( measures distance around the cylinder from the 
stagnation point S, and since the flow is symmetrical about the lines CC and SS 
we need only consider the range 0 < ( < &T. Finally, the boundary condition 
(4a) requires that u,v+O as r+m. 

Solutions of (5)-(7) of the form 

u = ul+Ri*u2+ ..., 
= R,*vl + Ri1v2  + . . ., 

p = Rc*p2+ ... 

are now sought. We remark that outside the boundary-layer region, which itself 
has thickness O(R;*), u1 E 0, so that we are anticipating in (10) the fact that the 
first-order inviscid solution in that region vanishes. We now consider the first- 
order boundary-layer solution, second-order inviscid flow and second-order 
boundary layer, matching a t  each stage in turn. For the boundary-layer region 
we introduce a co-ordinate g defined by 

First-order boundary layer 

Substituting (S), (10) and (11) into (5)-(7) gives, retaining terms O(1) and using 
(9), the following problem for u1 and ul :  

together with u1 _= 0 on the stagnation line f; = 0. Series solutions of these equa- 
tions, in odd powers of [, were obtained by Riley (1965) and Stuart (1966). These 
series are of limited value since only a few terms have been calculated. In  order 
to extend the solution up to the axis of oscillation ( = &n, where the boundary 
layers originating from the points S in figure 1 collide, Davidson & Riley (1972) 
used a fully implicit finite-difference technique to solve (12) and (13). Results 
from this numerical integration for the tangential velocity profile u1 are shown 
in figure 2 at angular distances of 30", 60", 75" and 90" from S. We note in par- 
ticular that at  ( = $n the boundary layer does not become empty, leading to an 
inevitable collision of the boundary layers as anticipated by figure 1. 
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FIGURE 2. The velocity profiles u1 calculated from first-order boundary-layer theory. 

Xecond-order inviscid $ow 
From the first-order boundary-layer solution we may calculate vlm, the value of 
v1 at the edge of the boundary layer. This is shown in figure 3, where it is seen 
to be negative for all <. Just as this boundary layer on the cylinder entrains 
fluid so does the jet, also with entrainment velocity O(R;t). If this entrainment 
velocity along the axis of oscillation is known, together with that on r = 1, then 
the outer inviscid flow, O(R;*), is due to a known sink distribution along y = 0 
(x < - 1, x > 1) and r = 1, and may be calculated using elementary complex- 
variable methods. 

Consider now the jet emerging on the axis of oscillation y = 0, x > 1. Davidson 
& Riley (1972) observed in their experiments that the jet profile had achieved 
the similarity form predicted by Bickley (1937) within one diameter from the 
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FIGURE 3. The entrainment velocity vlm at  the outer edge of the boundary layer (--) 
and the slip velocity u8 at the cylinder surface predicted by the outer inviscid flow (- - -). 

point at  which the jet emerges. If we adopt Bickleys' similarity solution for the 

(14) 
flow in the jet then 

@.:"I = [+N(x i- xO)]* tanh f j ,  
with f j  = (N/48(x  i- x0)')* y, 
where N is the momentum flux in the jet and xo is an arbitrary constant which 
reflects the uncertainty in the location of the origin for the similarity solution. 
The momentum flux in the jet will be related to the terminal momentum flux 

} 

La 

= 1 0 u?IE=*ndT 

in the boundary layer on the cylinder. I n  a region of dimensions O(R;B) centred 
upon C, neither the cylinder boundary-layer solution nor the jet solution is 
appropriate. Order-of-magnitude arguments show that the flow in this region is 
effectively inviscid, so that 02@p) = f(@?)), where v2 is the Laplacian operator 
on the scale of this region. Now, in this region, as we approach either the boun- 
dary layer or jet the inviscid equation for 11.1") may be approximated as 

a2@p)/an2 M f (@?)), 
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where n = 7 and rl in the boundary layer and jet respectively. Consequently 
we conclude that the velocity profiles at  the end of each boundary layer are 
convected around and emerge essentially unchanged on this scale. Similar 
situations, but in different physical contexts, have been encountered by Stewart- 
son (1958) and Lyne (1971). Exploiting this result we have N = 2 M  = 1.928, 
where the terminal momentum flux M is obtained from the calculated boundary- 
layer profile To determine xo we insist that mass be conserved and 
equate the mass flux in the jet at  x = 1 with that in the boundary layers impinging 
at  C. This gives xo = 0.1. Finally, then, we have for the entrainment velocity 
along y = 0 (x > 1 )  

Although the solution (14) cannot be expected to describe the details of the flow 
in the jet close to C, we consider that (15) is an accurate representation of the 
entrainment velocity along y = 0 (x > 1) .  A similar expression gives the entrain- 
ment velocity along y = 0 (x < - 1) .  

We are now in a position to calculate those quantities associated with the 
outer inviscid flow which are of direct interest to us. First we transform the 
plane z = rei8 = x + i y  to the complex 2 plane via the elementary transformation 

- 0*685/(x + O - l ) % .  (15)  Vlm = 

2 = z + z - l =  X + i Y ,  (16) 

so that the circle r = 1 is transformed to the slit - 2  < X < 2, Y = 0 and the 
axis of oscillation y = 0, x > I ,  x < - I to the slit (XI > 2, Y = 0. 

The velocity components in the physical plane with which we are concerned 
at  this stage are denoted by (Rgi U,, Rg+V,) in the transformed plane. Of prime 
concern to us in our study of the boundary layer on the cylinder is the slip 
velocity predicted at  the surface; this is given by 

us = 2U,(X, 0) sin 0, (17) 

with U,(X, 0) = - 
27r ' S W  - r n X - 8 y  @@ 

where the Cauchy principal value in (18) is to be understood. The source strength 
q ( X )  = 2 V ( X ,  0 + ) per unit length has, by symmetry, the property q( - X )  = q ( X ) ,  
so that, after a little manipulation, (18) may be written as 

Since the source strength is invariant under the transformation (16)  we calculate 
q ( X )  as 

2V1,/(4 - x2)a, x < 2, (20a)  
X Z f X ( X 2 -  4)* - 2 

(XZ - 4)t (X + (XZ - 4)4}' 
x > 2, q(x) = [2v1, 

where in (20a)  vlm is deduced from the first-order boundary-layer calculation 
as shown in figure 3, and in (20b)  vlm is derived from (15).  

The slip velocity at the cylinder surface predicted from the second-order outer 
inviscid flow by (17)  and (18) ,  which provides an outer boundary condition for 
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FIGURE 4. "he streamline pattern associated with the outer inviscid flow O(B;i ) .  

the second-order boundary layer, is shown in figure 3. In the absence of the sink 
distribution due to the jetwe have avariable sink strength at  the cylinder surface 
due to the entrainment velocity shown in figure 3. The strength decreases as B 
increases and this in turn implies a slip velocity at  the cylinder surface from 
C to S. This trend is discernible in figure 3 for us but is counteracted as C is 
approached by entrainment into the jet. 

The streamline pattern associated with the outer inviscid flow, O(R;B), is 
calculated from 

Y(X, Y )  = - 27T -a p(s) tan-1 (L) X - S  ds, Sm (21) 

where Y is the stream function for the inviscid flow, O(R;i) ,  in the transformed 
plane. The streamlines obtained from (21) and (16) are shown, in the neighbour- 
hood of the cylinder, in figure 4. When us is close to zero the streamlines approach 
the cylinder normally. However as C is approached and us increases the stream- 
lines meet the cylinder at an increasing angle to the normal, as shown in figure 4. 
We note also that for an unbounded fluid domain all the streamlines entering 
the jet do so 'backwards'. 

Second-order boundary layer 

The slip velocity us at the cylinder surface predicted by the outer flow is accom- 
modated by the second-order boundary-layer calculation. We now substitute 
(10) and (11)  into (5)-(7) and select the terms O ( @ ) .  From the continuity 
equation ( 5 )  we have au, av, a -+- = --(qvl). 

86 a7 a7 
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FIGURE 5. Profiles of uz resulting from the second-order boundary-layer calculation. 

The radial momentum equation (7) shows that pressure variations across the 
boundary layer are given by 

aP2IaT = u?, (23) 

and substituting for p z  from ( 2 3 )  in the transverse momentum equation (6) 
gives 

(24) 

Equations (22) and (24) are solved, using the implicit finite-difference scheme 
referred to earlier, subject to the boundary conditions 

u 2 = v 2 =  0 on 7 = 0, 

u2-+us as r-+co, (25) 
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together with the initial condition u2 = 0 a t  ( = 0. In  figure 5 profiles of u2 are 
shown. Two factors dominate the distribution of u2: the term representing the 
pressure gradient in (24) and the velocity us at the outer edge of the boundary 
layer. Initially the pressure gradient is favourable with a small reversed flow at 
the edge of the boundary layer. The velocity a t  the edge of the boundary layer 
gradually increases as shown in figure 3 whilst, in fact, the pressure gradient 
becomes adverse, leading eventually to a distribution of u2 which has negative 
values close to the boundary. These features are illustrat,ed in figure 5. 

3. Discussion of results 
In  this section we discuss the experimental results of Bertelsen in relation to 

the theoretical predictions of 6 2. 
As we have already mentioned in 3 1 the experimental technique of Bertelsen 

enabled him to measure velocity profiles in the boundary layer on the cylinder. 
The experimental profiles which he presents are at  approximately 57" from the 
stagnation point S, and all the measurements were made outside the shear-wave 
layer. The two sets of results presented are fore = +z, R, = 90 and e = &, R, = 400, 
and we note that Bertelsen bases e upon the diameter, not the radius, of the 
cylinder. Since, for these experiments, e and R;h are comparable we observe 
that any contributions to the time-independent velocity parallel to the surface 
in addition to those from the series (10) are a t  most O(e2R;*) and therefore 
smaller than those [O(eR;S)] which have been retained in our outer solution. 
Bertelsen's results are shown in figure 6 together with theoretical curves from 
both first- and second-order boundary-layer theory, with R, = 90 for the latter. 
In  figure 6 the theoretical curves are of course the mean Eulerian velocity pro- 
files; as Bertelsen observes, the Stokes drift becomes insignificant outside the 
shear-wave layer. Figure 6 shows that when effects of finite Reynolds number 
are taken into account the agreement between theory and experiment is im- 
proved but, at best, we can still only claim qualitative agreement. As far as the 
experimental results themselves are concerned (the presentation here differs 
from the normalized plots of Bertelsen's figure 6, where the abscissa should be 
( r  - a)/&,) such trends as are discernible as R, increases could possibly be accoun- 
ted for by the effects of finite R,. 

The only other detailed experimental measurements at high values of R, 
have been made by Davidson & Riley (1972). Their measurements are of the 
flow in the jet which emerges along the axis of oscillation, for values of R, M 300. 
They obtain relatively good agreement between the measured and theoretical 
values for the momentum flux in the jet using first-order boundary-layer theory, 
which, to some extent, substantiates the model of jet entrainment adopted here. 
Although the momentum flux in the jet is a gross property of the flow the agree- 
ment referred to above suggests that the discrepancy between theory and experi- 
ment in the present case must owe its origin to effects other than finite R,. 

In  the experiments the ratio A/a of the radius of the containing cylinder to 
that of the vibrating cylinder varied between 13 and 20. Although Bertelsen 
considers that in his experiments the finite size of the container cannot explain 
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FIGURE 6. Comparison between first-order boundary-layer theory (solid line) and second- 
order boundary-layer theory at R, = 90 (dashed line), with the experimental measure- 
ments of Bertelsen (1974) for R, = 90 (open circles) and R, = 400 (solid circles) at & = 1. 

the observed discrepancy, this point is worthy of further consideration. When 
the cylinder begins to vibrate from a state of rest with frequency w the time 
which elapses before the Stokes shear wave is established is O(w-l). We note 
that in the experiments the range of frequencies was 150-350 Hz. It has been 
shown by Riley (1967) that the outer boundary layer develops over the much 
longer time scale O ( S - ~ W - ~ ) .  This also corresponds to the time taken for the jet, 
in which the velocities are O(eU,), to become established. At this stage we have 
a quasi-steady flow away from the immediate neighbourhood of the outer 
containing cylinder which is independent of its size. Outside the boundary layer 
on the vibrating cylinder and the jet we shall have irrotational flow and the 
theory of $ 2  is directly applicable. However, because of the presence of the 
outer container we cannot expect this situation to prevail for all time. The fluid 
velocities outside the boundary layer and jet are O(eR;*U,), and so the time 
taken for a fluid particle to traverse the finite distance between the two cylinders 
will be O(Ric-2Aa-1w-1). After that time we can expect the effects of the outer 
cylinder to be important. For example, it seems likely that there will be regions 
of recirculating flow in which, according to the Prandtl-Batchelor theorem, the 
vorticity will be uniform. These regions of flow with uniform vorticity can be 
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expected to lead to significant modifications to the results derived in $ 2  for an 
unbounded fluid region. 

In  the presentation of his experimental results Bertelsen does not indicate 
the time which had elapsed from the initiation of the motion before the measure- 
ments were made. An examination of figure 4(a )  (plate 1) in Bertelsen’s paper 
shows that the outer inviscid flow, inferred from the experiments, will have a 
stagnation point on the jet axis between one and two diameters from the inner 
cylinder surface. We recall that the results of $2  show that when the fluid region 
is unbounded the streamlines always enter the jet backwards. This suggests that 
in the experiments a sufficient time had elapsed following the initiation of the 
motion for the effects of the outer containing cylinder to be important close to 
the vibrating cylinder. 

Another possible explanation for the difference between theory and experi- 
ment advanced by Bertelsen is the upstream effect of ‘separation’ where the 
boundary layers erupt a t  the points C. However Davidson & Riley did not 
observe separation, in the conventional sense, at  C in their experiments and as 
we have indicated in 9 2, the region in which the boundary layers turn to form the 
jet is one of size o ( ~ R ; + ) .  

We may conclude that the effects of a finite R, explain only in part the discre- 
pancy observed by Bertelsen between experiment and first-order boundary- 
layer theory. The effects of the outer container appear to be comparable with 
those of finite R, in the experiments and further work, of either a theoretical 
or experimental nature, is necessary to explain fully the discrepancies observed 
by Bertelsen between theory and experiment. 

The author is indebted to Professor J. T. Stuart and Professor D. W. Moore 
for their constructive criticisms and comments upon an earlier version of this 
paper. 
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